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Enantioselective addition to iminoester and equivalents provides Table 1. Zn-Catalyzed Asymmetric Allylation of Hydrazono Esters

an efficient route to optically active-amino acids. While catalytic 1 with Allylboronates 2a—c 20, (10 mol%)
asymmetric Mannich-type reactions of iminoester derivatives have R? §n,‘ Ph R?
been reported)ess progress has been made for the corresponding OY©/ MeO N{-i__H<N OMe OYQ/
allylations® We now report catalytic asymmetric allylation of H o A
hydrazono esters with allylboronates; the remarkable regio- and N .= ) 4a (12 mol%) o HIY
stereoselective formal-addition of allylboronates is also described. ﬁ)kH = 07 \Water/Co-Solvent = 3/5 ﬁ/\/\
. . . R i o R
Recently we reported catalytic asymmetric allylation of hydra- 01 2(1.2equv)  0.-025M,0°C,24h ° 3
zono esters with allyltrimethoxysilarie While the reactions pro- Euy R R? 1 2 CoSovemt 3 Vil Eelw)
: Yy Yy . ) - P 1 Et  H 1a 2a Acetone 3a Quant(0)® 79
ceeded smoothly in agueous media (water/F=E/9) in the pres- 2 Et H 1a 2a DME 3a  Quant 72
. . . . H t
ence of Znk-chiral diamine to afford the corresponding allylated i EI Hoo1a §2 D-Il;/TSFO 32 Qgin 3?
products in high yields with good selectivities, they suffered from Z g‘ : 1; ga AMetCN :: Q7gm 33
. . . n cetone U
the requirement to employ an excess (3 equiv) of allyltrimethoxy- 7 Me H 1 2a Acelone 3 84 82
silane, a relatively low reactivity, and a narrow substrate scope. S E o Za e > 4
To address these issues we decided to investigate allylboronates 10 Et OH 1f 2a Acetone 3f 80 86
: . . : 11 Et NMe, 1g 2a Acetone 3g 98 86
as allylating agents instead Qf aIIyItrlm_ethoxysHane. 12 Et NMe, 1g 2b Acetons 3g 95 86
It was found that the desired reactions proceeded well when 13 Et NMe, 1g 2c Acetone 3g 95 87
. . . . 14° Me NMe, 1h 2a Acetone 3h Quant 90
hydrazono esteta* was treated with allylboronic acid pinacol ester A
. . . . . i ts:
(2a) in the presence of catalytic amounts of Zh&nd chiral diamine VeI a0 2ai RO =R =H O Jabne s

4ain water/organic solvent mixtures, affording the allylated prod- R 8 2R MR M B 2cns2

ucts in high yields \{vith good enantioselectivities (Table. 1). ltis . b1 he absence of water. © ZnF (5 mol%), 4a (12 mol%), 0.05 M, 36 h.
noted that the reactions proceeded faster than those using allyltri-

methoxysilane and that high yields were obtained using a slight Table 2. Zn-Catalyzed Asymmetric Allylation of Hydrazono Ester
excess of the allylating agent (1.2 equiv). Among organic co-sol- 1h with a-Substituted Allylboronates 2

vents tested, acetone gave the best results (Table 1, entrig®s 1 R O ZcxrlFﬁ(zsnTocﬂ;S) NMe;
Interestingly, the reaction did not proceed at all in the absence of o+ =)_B\o Water/Acetone = 3/5 0@
water (entry 1). Moreover, other allylborona®isand2c gave the 2(12equv)p, 0 05M 20°C.4BR N

same levels of yield and enantioselectivity (entries 12, 13). After NQ_,fN B

o . o . OYY\
optimization of the reaction conditions, the desired allylated product OMeMe MeO R
Q Q 3
4b

3h was obtained quantitatively with 90% ee from hydrazono ester

1h and allylboronate2a in water/acetone (3/5) at €C in the Entry R 3 Yield (%) aly synlanti_ Ee (%)
presence of 5 mol% of ZnFand 12 mol% of chiral diaminda 1 Me(2f 3i Quant  >99/<1 <1599 88
try 14 2 Et 3j 98 >99/<1 <1/>99 87
(entry 14). _ ) ) _ 3 Bu 3k 88  >00<i <1599 87
We then investigated the reactions using substituted allylboro- 4 FAmyl 3l 76 >99/<1  <1/>99 87
nates. WhenH)-crotylboronate2d was treated with hydrazono ester 52 OBn_ 3m 65 >0/t <1599 W 82

. L. . . 24b d instead of 4a.
launder the optimal conditions, the reaction proceeded diastereo- was usedinsiead o 4a

selectively gynfanti = 96/4) but very slowly in low yield (19%  ably, noy-addition product was obtained. Only anti-adduct was
after 110 h at 0C), and the enantiomeric excess of the major dia- produced in high enantiomeric excess. The reaction proceeded at
stereomer was also low (7% ee). Similarly)-crotylboronate2e —20°C to afford the crotylated product quantitatively with perfect
reacted withlato afford the crotylated product diastereoselectively anti-selectivity and 88% ee (entry 1). We tested oihesubstituted
(syrfanti = 1/99), but again the yield and the enantioselectivity of allylboronates (entries-25), and in all cases only format-addition

the major product were very low (25% yield, 14% ee). These results products were obtained. In additioanti-adducts were obtained
were unexpected since high reactivity was observed in the reactionsexclusively in high yields with high enantioselectivities in all cases.
using unsubstituted allylboronat2a—c. We next studied the reac-  These results are especially remarkable because stereoselective
tions of a-substituted allylboronates (Table 2). Wharmethyl- reactions of various allylating agents with carbonyl and related
substituted allylboronat2f® was reacted with hydrazono estdr compounds have been well investigated, and to the best of our
under the optimal conditions, the reaction proceeded faster, andknowledge naatalyticregio- and stereoselective formaladdition
unexpected crotylated prodwgitwas isolated in high yield; remark-  reactions have been reported to date.
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Scheme 1. Assumed Reaction Pathway and Catalytic Cycle
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Scheme 2. Zn(OH),-Catalyzed Asymmetric Allylation in Aqueous
Media

2Zn(OH), (5 mol%)
4a (12 mol%)

ih + 2a 3h
(12 equiv) Ve e e’ 80%yield, 85% ee
Scheme 3. Synthesis of Allylglycine Derivatives
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At present we assume this unprecedented reaction pathway and

catalytic cycle as shown in Scheme 1. In an initial stage,
allylboronate2 may react with Znkto form allylzincate. While
this process was confirmed by NMR analysis using allylboronate
2a and Znk, similar experiments usingx-methyl-substituted
allylboronate2f and Znk, have so far proved unsuccessful. We
assume tha2f may react with Znkvia a six-membered chairlike
transition state)-addition of2f toward Znk) to afford Z-crotylzinc
species, which may react with hydrazono edistereoselectively
via y-addition, giving the crotylated product witinti-selectivity?
Another interesting point regarding this proposed pathway and
catalytic cycle is regarding the regeneration of ZoFother active

Zn species. Since water is necessary in this reaction, hydrolysis of
intermediate5 may proceed smoothly to afford the product along
with generation of Zn(OH)F. Since after the second turnover
Zn(OH), may be formed, we then conducted the reaction employing
catalytic Zn(OH}) instead of ZnE to test its efficacy as a catalyst
and probe the mechanism. Interestingly, the allylation reaction of
1h with 2a proceeded using Zn(Oklps a catalyst to afford the
desired allylated product in 80% yield with 85% ee (Scheme 2). It
should be noted that, to the best of our knowledge, this is the first
example of a chiral metal hydroxide-catalyzed asymmetric reaction
and that metal hydroxides are ideal catalysts for organic reactions
in aqueous medi¥.

To demonstrate the utility of this asymmetric allylation and
determine the relative and absolute configurations of the products,
several transformations of the products were conducted. Allylated
adduct3h was treated with Chz-Cl, followed by Spnio afford
allylglycine derivative6;!! similarly, 3i was converted t@.'2 3m
was also converted to the previously reported allylglycine derivative
8 bearing a hydroxy group in good yield (Schemée-3).

In summary, we have developed Zn-catalyzed asymmetric
allylation of hydrazono esters with allylboronates. Several charac-

teristic features of these reactions have been revealed. (1) Catalytic

asymmetric allylation of imine derivatives was attained in high
yields and high stereoselectivities. (2) Forraahddition occurred

for a-substituted allylboronates exclusively, and excellent stereo-
selectivities were observed. This is the first exampleathalytic
regio- and stereoselective allylations with forneabddition. (3)
The reaction proceeded in aqueous media. The use of water is
essential. (4) Zn(OH) might be a catalyst in this asymmetric
allylation. The catalytic activity of Zn(OH)was confirmed, and
this is also the first case of chiral metal hydroxide catalyzed
asymmetric reactions. Further investigations to clarify the precise
mechanism of the formal-addition as well as catalytic cycle of
Zn species and to use metal hydroxides in organic reactions in
agueous media are now in progress in our laboratories.
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